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Abstract: This paper prolongs the research of 

method of division of motions. It is applied to the 
multi-channel case, when object has several 
inputs and outputs, which influence is 
interconnected. Such systems are treated as 
MIMO systems, which mean “many inputs and 
many outputs”. This paper uses the Lemmas and 
Theorems proved in previous paper.   
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INTRODUCTION 

This paper is development of the Localization 
approach [1] and Method of division of motion [2] 
for multi-channel case. Multi-channel case (MIMO) 
is very relevant for science, industry, machatronics 
and technology [3–7].  

Multi-channel systems are assumed to be 
systems of automatic control of objects with r 
output values dependent on m input variables. In 
this case, the available cross relations do not allow 
considering the object as a set of single channel 
objects. If mr > , then mr − output values remain 
uncontrollable. If mr < , then nm −  input 
parameters should be either fixed or dependent on 
the rest ones. Further we take mr = . 

The purpose of control is to provide the 
property: 

)()(lim tVtY
t

=
∞→

 

where )(tY  is an output vector of dimension m , 

)(tV  is a prescription vector of the same 

dimension.  
Let us use the object description as matrix 

equation in the operator form: 
)()()()( sUsAsYsB = .  (1) 

Here )(sU  is m-dimensional control vector, 

)]([)( sasA ij=  and )]([)( sbsB ij=  are 

polynomial non-degenerate matrix of dimension 
mm× , i. e. 0)(det ≠sA , 0)(det ≠sB .  

It is assumed, that the greatest common divisor 
of elements in each said matrix is unity.  

We require additionally that matrix )(sB  be 

diagonal one, i. e. )}({)( sbdiagsB i= . It means 


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
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=∀

=
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ij  

If it is not so, we multiply equation (1) by 

)(1 sB−  from the left side and with the introducing 

of the designation )()()( 1 sAsBsW −=  we get 

)()()( sUsWsY = . (2) 

Here )]([)( swsW ij=  is matrix transfer 

function. 
Let us find out the least common multiple 

(LCM) of denominator for scalar transfer function 
of each line: 

)}(),...(),({)( 21
* swswswLCMsb imiii = , 

and if we multiply the equation (40) on the left by 

the matrix )}({)( ** sbdiagsB i= , we get  

)()()()()()()( *** sUsAsUsWsBsYsB == , 

Here )()()( ** sWsBsA =  is polynomial 

matrix. If the object description is given in terms of 
transfer functions (40), it is also reduced to the form 
(39). 

The desired dynamic equation is  
).()()( sVsYsQ =         (2) 

Here, )}({)( sqdiagsQ i=  is diagonal matrix. 

Let us construct the regulator of the form  
)()()()()( sVsZsDsYsC =+ , (4) 

where )}({)( sddiagsD i= , 

)}({)( scdiagsC i=  and )(sZ  is determined by 

the following equation: 

)]()()()[()( 1 sYsRsZskAsU −= − .    (5) 

Here, )}({)( srdiagsR i=  is diagonal matrix 

too, k is gain in the feedback loop (large 
coefficient). 

1. MULTICHANNEL SYSTEMS: RAISING OF THE 
ORDER 

Let us denote )](deg[ sdm ii =  a power of 

polynomial )(sd i .  

Correspondingly, )](deg[ srn ii = , 

)](deg[1 scn ii =− . We note that the matrices 

)(sC  and )(sD are not-degenerate, i. e.  

0≠ic , 0≠id , mi ,...1=∀ .      (6) 

The value ii mn +  is the power of the 

characteristic polynomial of i-th circuit of the 
system “object + regulator” without taking into 
account fast motions. It is assumed that there are no 
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roots of equation 0)(det =sA  in the right half of 

the complex plane. Otherwise the regulator will be 
unstable.  

Lemma 1.  
With the growth of k the system (1), (2), (4) is 

arbitrarily exactly described with the equation (3) 
where the matrix )(sQ  elements are determined as  

∑
+

=

=+=
ii mn

j

i
ijii

n
i sqscsdssq

0

)()()( . (7) 

In other words, the system is equivalent to m 
single channel system. In this case, characteristics 
polynomial of i-th channel is described by 

polynomial )(sqi , i. e. as 01 →−k  the system 

becomes autonomous.  
Proof.  
As to the location of roots of the polynomial 

)(det sA  one can note the following: equations 

(42), (43) are equivalent to 

+−−= −− )(()[()()( 11 sCsDsAsU µ
)]()()()( sVsYsRsD ++ . 

This equation poles are determined by roots of 
the polynomials )(det sA  and )(det sD . Assume 

that roots of )(det sA  are located in the closed left 

half-plane. Poles of )(det sD  we locate in the left 

half-plane. Actually, the characteristic polynomial 

for i-th loop )(sqi  is equal to 

)()()()( scsrsdsq iiii += , 

Where powers of )(sqi  and )(sd i  are equal 

to ii mn +  and in  respectively. Giving )(sd i , we 

find out uniquely )(sri  and )(sci . 

Let us prove the Lemma 1. For the sake of 

simplicity we assume that )](deg[ srn ii = . The 

substitution of (43) into (39) yields  
)()()()()( sYskRskZsYsB −= . 

Now we multiply this expression additionally 
by )(sD from the left side: 

+=+ )()()()]()()()([ sYskCsYsRskDsBsD

)(skV+ . 

Substituting here (42), we get  

)()()]()()()()([ 1 sVsYsCsRsDsBsDk =++− . 

In that equation all matrices are diagonal ones, 
therefore it is equivalent to the following system 

)()()]()()()([ 1 svsyscssdsbsdk iii
n

iii
i =++−

, mi ,...,1= . 

Power of polynomials )(sd i , )(sbi , )(sci  are 

equal to im , in , 1−in  respectively. Taking into 

account (44) as ∞→k  this system can be 
replaces by the following  

)()()]()([ svsyscssd iii
n

i
i =+ , mi ,...,1= , 

or in the compact representation by  
)()()]()()([ sVsYsCsRsD =+ , 

that is equivalent to (3) taking into account (7). 
Thus, for the obtaining the desired dynamics (7) 

with the channel “i-th input – i-thoutput” one 
should take regulator of the kind (4), (5). In this 

case, all the roots of polynomials )(sqi  should be 

located in the left open half-plane, i. e. their real 
part must be negative which corresponds to the 
stable desired dynamics. This condition is sufficient 
to meet the requirement (6). For the regulator 
stability one has to require additionally that the 
roots of the polynomial )(det sA  should be also 

located in the left half-plane.  
Example 1.1. 
Let consider the object  
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It is required to provide the characteristic 
polynomial of the first loop equal to  

1)( 1
2

2
3

31 +++= ssssq ααα , 

and that of the second loop:  

1)( 1
2

2
3

32 +++= ssssq χββ , 

hence 311 =+ mn , 322 =+ mn . 

We transform the object description to the form 
(6): 
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i. e. 221 == nn .  

Let find out 1)( 1111 =−+= nnmm  and 

similarly 1=m . So, we find out that 

1)](deg[ =sd i , i. e.  

},{)( 20211011 dsddsddiagsD ++= . 

Since 11)](deg[ =−= ii nsc  , then 

},{)( 20211011 csccscdiagsC ++= . 

The only thing left is to write down the matrix 
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 },{}{)( 22 ssdiagsdiagsR in == . 

According to (45) the desired characteristic 
polynomial should have the form 

)()()( 10111011
2

1 cscdsdssq +++= , 

)()()( 20212021
2

2 cscdsdssq +++= , 

hence, we have elements of matrices )(sC , )(sR , 

)(sD : 

311 α=d , 210 α=d , 111 α=c , 1010 == αc , 

321 β=d , 220 β=d , 121 β=c , 1020 == βc . 

For the realization of this control law the 
vectors yy ɺ,  should be accessible. The regulator 

equation has the form: 

+








= − )(
)(

)(
()()( 1 sY

sd

sq
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iµ

))(
)(
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
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+ . 

If one takes 0=im  for each i  from (4), (5) 

regarding that )(sD  is a unit matrix we get  

)()()()( sVsZsYsC =+ , (4*)  

))()()(()()( sYsRsZksUsA −= . (5*) 

The equation (45) is transformed as follows  

)()( scssq i
ni += , (6*)  

That is the following corollary is valid. 
Corollary 1. 

With the growth of k the system (1), (4*), (5*) 
becomes autonomous for output channels. The 
characteristic polynomial of i-th loop is arbitrarily 
exactly described by polynomial (7). 

Thus, the regulator (4*), (5*) provides the 
desired dynamics of i-th loop of the same order as 

the power of polynomial )(sbi  (1). The regulator 

equation can be presented in the explicit form: 

))()()()()()(()( 1 sVsYsRsYsCskAsU −−−= −

. 
Example 1.2.  
For the object 
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it is required to get the characteristic polynomials 

101 )( cssq += , 202 )( cssq += . 

Let the rewrite the object equation in the form 
(40): 
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that is 121 == nn , 121 == mm . Let us make 

use if Corollary 1. Take },{)( 2010 ccdiagsC = , 

},{)( ssdiagsR = . Then the regulator equation is  
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that is for its realization values yy ɺ,  are necessary. 

For some objects the regulator (4*), (5*) is 
physically realizable. As for example, for the 

objects of the kind 












+ sT

k

ij

ij

1
 this statement is 

valid. 
Now let us consider the case where the only 

vector )(sY  is accessible for measurements. Let us 

construct the regulator of the form 
)]()()([)()()( sVsYsCksUsAsD +−= , (8) 

where )}({)( sddiagsD i= . The power of 

polynomials )(sd i  define from the condition 

)](deg[)]}({deg[min)](deg[ scsasd iij
j

i =+ ,(9) 

which provides the physical realization possibility 

of regulator (46). Here, )(saij  are elements of 

matrix )(sA . Let us denote rsd i =)](deg[ . The 

factors of the polynomials )(sd i  will define from 

the condition of decoupling of slow and fast 
motions in i-th loop. In addition, one has to provide 
the given location of regulator roots and system 
roots corresponding to motion (for example, they 
should be in the given sector). Since the 

characteristic polynomial )(sd i  will be defined 

from the consideration of  

0)()()( =+ scsbsd iiµ .        (10) 

where )(sci  is the desired characteristic 

polynomial of i-th loop of the power im , i. e. 

ii msc =)](deg[ . Polynomial )(sbi  is included 

into the object description and its power is in . 

Thus, one should define )(sd i . Let us denote is 

power as ir . Denote 1−−+= iiii mnrq . Take 

)(sd i  of the kind 
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+=∑
=

++−
+

i
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q

j

jnmi
jii ssd

1

1
1,)( µα

∑
+−

=

+
1

0

ii nm

j

j
ijsβ

. (11) 

Here 11, =+iqiα , 11, =+− ii nmiβ . 

Let us consider the question of choosing the 

power of polynomial )(sd i  and its coefficients, 

i. e. ir , ijα , ijβ . Let us denote  

iij
j

lsa =)]}({deg[min . 

Then ir  will be taken such as to satisfy the 

realization  

iii lmr −≥                      (12) 

 

with its minimal value. As to the choice of 
coefficients, there are two possible cases. The first 

case, if 1+≤+ iii mnr , then coefficients are 

selected from the condition of stability of )(sd i . If 

1+≤+ iii mnr , one should rather use the 

structure of the kind (10). The problem of choice 

for ijα , ijβ  is considered in the preceding section. 

The following lemma is valid. 
Lemma 2. 
For the object (1) with regulator (12), where the 

matrix )(sD is determined according to (10) with a 

decrease of µ the characteristic polynomial of 

system is determined by the matrix )(sC . 

Proof. 
Substitution (11) into (10) gives: 

++++ +−−−−+
−−+

−+ 22
2

11
1, ...( iiiiii

iii

iiii nm
i

rmnr
mnri

rmnr sss µαµαµ  

...)(... 1
1,01,

1 +++++++ −
−

−
−

+− i

i

iii

ii

ii n
ni

n
ii

nm
nmi

nm sbssss µβµβµβµ  

01,0 ...) ii
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After the regrouping the terms taking into 

account that µ can be done quite small we get: 

∑ ∑
−+

= =

+ +
iii i

i

mnr

j
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j
ij

jmj
ij scs

1 0

µα . 

Here 01 =iα , 1, =−+ iii mnriα . The slow 

motions in the obtained relation are defined by the 
following polynomial 

∑
=

=
im

j

j
iji scsc

0

)(  

The statement of the lemma is proved.  
Thus, for the design of regulator providing the 

given dynamics )(sC  under the assumption of 

accessibility for measurements of vector )(sY  

only in (7) it is necessary to determine )(sD  

according to (8), (9) and by the method presented in 

the second section to give the coefficients ijα , 

ijβ . 

Example 1.3 
For the object given in Example 1.1 it is 

necessary to design the regulator (45) such that  

1011
2
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3

131 )( cscscscsc +++= , 

2021
2

22
3

23
4

242 )( cscscscscsc ++++= . 

In the given example we have 221 == nn , 

121 == ll , 31 =m , 42 =m , 

)]}({deg[min sal ij
j

i = . 

One should choose iii lmr −≥ , hence 21 =r  

(the power of the polynomial )(1 sd ) and 32 =r . 

The check of the relation 1+≤+ iii mnr  shows that 

the value of the coefficients of )(1 sd  and )(2 sd  

one has to choose only from the condition of 
satisfactory form of transient processes in the 
regulator itself. Thus, according to Lemma 2 we 
take 

12)( 2
1 ++= sssd  , 

122)( 23
2 +++= ssssd . 

In this example 1)](deg[ =saij  for all ji, . It 

is assumed that the roots of equation 0)(det =sA  

are located in the left half-plane. 
Corollary 2. 
For the object (1) with the regulator (8), where 

martix )(sD is defined according to  

01

1

1

1
1,)( ii

n

i

jj
jii sss ββµαα ++=∑

−

=

+
+ , (11*) 

the characteristic polynomial of i-th loop is 

described by polynomial )(sci  of the same power 

as )(sbi .  
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That is, for the realization of the characteristic 

polynomial )(sci  of power in  it is necessary to 

choose )(sD  of the form (11*) 

Example 1.4 
For the object 
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one has to provide the desired dynamics 

2010, cscs ++ , i. e. 121 == nn , 021 == mm ,  

121 == rr . According to (11*) we take 

101 )( dssd += , 202 )( dssd += . That is the 

regulator has the form 
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2. MULTICHANNEL SYSTEMS: LOWERING OF 
THE ORDER  

Let construct regulator for the object form (11)  
)]()()([)()( sVsYsCKsUsA +−= . (13) 

Here }{)( ikdiagsK = , ni ,...2,1= ; ik  are 

gain coefficients. )}({)( scdiagsC i= , 

ii msc =)](deg[ .  

Let us require that with the growth of K the 
characteristic polynomial of the system i-th loop is 
approaching to: 

∑
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j
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Here ii nm <  (that is just the order lowering). 

Matrix )(sC  is given in the following way: 
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where in  is the power of polynomial )(sbi  

(compressed into the object), im  is the power of 

desired polynomial for i-th loop. Assume that 

1, =
imic , 11 =iα . Matrix K will be given as 

follows  

}{}{ ii mn
i kdiagkdiagK −== . (16) 

Lemma 3. 
The characteristic polynomial of the i-th loop of 

system (39), (51) with the growth of k is arbitrarily 
exactly described by the following expression  
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Proof. 
Under the stability condition (17) with µ  small 

enough we get the necessary property, namely, the 
system properties are nearing those properties 
described by (14). For attainment the stability of 

(17) it is sufficient for the choice of ijα  to use the 

method presented in preceding items. 

Now we substitute (13) into (1): 

)()()]()([ 1 sVsYsCsBK =+− . 

As K , )(sB , )(sC  are diagonal matrices, we 

get that the characteristic polynomial of the system 
i-th loop is determined by the expression 

)()(1 scsbk iii +− . With µ=−1k  taking into 

account (16) when substituting (15) into presiding 
relation we get: 
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After the regrouping terms under the 
assumption of small value of µ  we obtain the 

lemma statement.  
Corollary 3. 
The characteristic polynomial of system (1), 

(13), where  

}{ ikdiagK = , nikki ,...,1, =∀= ; 

)}({)( scdiagsC i= , ∑
−

=

=
1

0

)(
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j

j
iji scsc , 

11, =−inic , 

with the growth of K is arbitrarily exactly 

described by polynomial )(sci  for i-th loop. 

That is the characteristic polynomial order is 
reduced by a unity.  

The Corollary 3 was obtained from Lemma 3, 

taking 1−= ii nm , rri =  in contrast to (16). 

Example 2.1. 
For  two-dimensional object with matrix 

transfer function )()()( sYsUsW = , where 

])1([)]([)( 1−+== sTkswsW ijijij ; 2,1=i , 

2,1=j ; it is necessary to design regulator with the 
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desired dynamics by the i-th loop of the kind 

0ics + . 

We reduce the object description to the form 
(39) and obtain: 
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It is assumed that eigenvalues of )(sA  belong 

to the left half-plane. We obtain that 

2)](deg[ == ii nsb , 1)](deg[ =sai , 1=im . 

Therefore, let us make use of Corollary 3: we take 

0)( ii cssc += , }{ 1−= µdiagK . Thus, we get 

regulator  
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The characteristic polynomial of i-th loop is 

equal to 0
2

icss ++µ . With 0→µ  we get 

0ics + , that is required. From the form of regulator 

equation it follows that for realizing this law it is 

sufficient to measure vector 







=

)(

)(
)(

2

1

ty

ty
tY . 

Corollary 4. 
For the object (1) with regulator (13), where 

iii nsbsc == )](deg[)](deg[ , 1−== µkki , 

∑
=

=
in

j

j
iji scsc

0

)( , the characteristic 

polynomial of the i-th loop with the growth of k is 

approaching )(sci . 

In general case, from (17) it is follows that for 
realizing the control law with desired dynamics one 

may need the vectors )()1( ,..., rYYY , where 

}max{ irr = , 

)]}({deg[min)](deg[ sdscr j
j

ii == . 

Let us consider the construction of regulator 
providing the desired dynamics of reduced order 
with accessibility for measurements only vector Y . 
Let us choose the regulator form as 

)]()()([)()()( sVsYsCKsUsAsD +−= , (18) 

 

Here )}({)( sddiagsD i= , }{ ikdiagK = , 

)}({)( scdiagsC i= , mi ,...2,1= . We take 

1)](deg[ −= ii nsc , where )](deg[ sbn ii = . 

Let denote ii qsd =)](deg[ . Dimensions of the 

matrices )(sA , K , )(sC  are nn× . From the 

possibility of realization of regulator (18) we 
impose the limitation  
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, 

 

i. e. 1−≥+ iii nlq  for all i , where 

)]}({deg[min sal ij
j

i = . We take minimal order 

1−−= iii lnq  and give )(sd i  and )(sci  as 

followings: 

∑
=

+−=
i
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q

j

jj
jmnii ssd

0
,)( µα , (19) 

∑∑
=

−−

=

+ +=
iii

i

m
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j
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j

jmj
iji scssc

0

1

1

)( µα , (20) 

where 1=ijα , 1, =+− iii qmniα , 1, =
imic , 

ii mn
ik −− = µ1

. 

Lemma 4. 
For the object (1) with regulator (18) with the 

growth of ik  and with the choice of )(sd i  and 

)(sci  according (19) and (20) , the characteristic 

polynomial approaches the form  

∑∑
=

+−

=

+ +
iiii

i

m

j

j
ij

qmn

j

jmj
ij scs

01

µα , (21) 

where 1=ijα , 1, =+− iii qmniα , 1, =
imic . 
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If the polynomial remains stable at 0→µ , the 

first term of (21) determines the fast roots and the 
second one determines the slow roots. Thus, in this 
lemma it is stated that slow motions in the system 

are determined by polynomial (14). Here ii nm < , 

im  is the power of the desired characteristic 

polynomial of the i-th loop.  
Let us prove the Lemma 4. Substituting (18) – 

(21) into (1) one gets the system characteristic 
polynomial of the form  

 

)(
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jmj
ij

i

ii

ii

i ++ ∑∑
=

+−

+−

=

+ αµµµα . 

 
If we remove the parenthesis, rake into account 

that 1+>> ii µµ , group the similar terms, separate 

terms containing µ  in minimal powers and neglect 

all the rest, we get the equation (20). 
One can formulate the corollary. 
Let us consider the special case. Let choose the 

following structure of regulator 

∑
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=
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j
iji scsc , 11, =−inic , 

∑
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iq

j

jj
jii ssd

0
1,)( µα , 11 =iα , 

11, =+iqiα ,  µ=−1
ik ,  

1−−= iii lnq . (60) 

 
Corollary 5. 
For he object (1) with regulator (18) with the 

choice of )(sd i  and )(sci by (22), at 0→µ  the 

characteristic polynomial of i-th loop is 
approaching the form  

∑∑
−

==

+ +
ii

i

n

j

j
ij

q

j

jnj
ij scs

1

01

µα .  (23) 

 
 
 
 
 
The Corollary 5 can be interpreted as follows. If 

the required dynamics of the i-th loop should have 

the order 1−in , then for the regulator design one 

should use formulae (18) and (22). For proving the 

Corollary 5, it is sufficient to give 1−= ii nm  in 

Lemma 3. 
Example 2.2. 
Let the object be described by the matrix 

transfer function [10]: 
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It is required to design the regulator providing 

the desired dynamics by the first and second loops, 
respectively: 

101 )( cssN += , 202 )( cssN += . 

Here  
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sB , 

i. e. 2)](deg[ =sbi , 1=im . As 1=il , 0=iq , 

then 1)( =sd i , i.e. )(sD  is unit matrix, 

}{1 µdiagK =− . Thus we obtain the regulator in 

the form 
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The task is solved. 

CONCLUSION 

In the paper the development of method of the 
dividing of motions has been developed. The results 
are proven by mathematical conversion taking into 
account that it is allowed to neglect small terms in 
equations comparatively much bigger terms with 

the same power of argument s (argument of 
Laplace transform which is relative to frequency). 
The proposed method does not allow getting of 
astatic multi-channel system. For this purposes it is 
necessary to use preliminary integrator in the input 
of the channel, as it is recommended for SISO 
systems in paper [2].  
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In this case the integrator transfer function in 
multi-channel case has the following form: 





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
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
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



==
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s
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1
...0

.........
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1

]
1

[)( . 

This multiplier is set at the object input before 
the procedure of the regulator design. It is 
essentially, that in this case the order of the 
resulting new object is increasing.  
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