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Abstract: This paper prolongs the research of
method of division of motions. It is applied to the
multi-channel case, when object has several
inputs and outputs, which influence is
interconnected. Such systems are treated as
MIMO systems, which mean “many inputs and
many outputs”. This paper uses the Lemmas and
Theorems proved in previous paper.
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INTRODUCTION

This paper is development of the Localization
approach [1] and Method of division of motion [2]
for multi-channel case. Multi-channel case (MIMO)
is very relevant for science, industry, machatrsnic
and technology [3-7].

Multi-channel systems are assumed to be
systems of automatic control of objects with
output values dependent on input variables. In
this case, the available cross relations do nowall
considering the object as a set of single channel
objects. Ifr > m, thenr —Moutput values remain
uncontrollable. If r <m, then M-—n input
parameters should be either fixed or dependent on
the rest ones. Further we take= m.

The purpose of control is to provide the
property:

limY () =V (t)

where Y (t) is an output vector of dimensiof,

V(t) is a prescription vector of the same

dimension.
Let us use the object description as matrix
equation in the operator form:

B(s)Y(s) = A(U(s). (1)
Here U (S) is m-dimensional control vector,
As) =[a;(s)] B(s) =[h; (s)]
polynomial non-degenerate matrix of dimension
mxm,i. e.detA(s) #0, detB(s) Z0.

It is assumed, that the greatest common divisor
of elements in each said matrix is unity.

We require additionally that matrixB(S) be
diagonal one, i. eB(s) = diag{b (s)} . It means

(b(9, Ti=],
b'i(s)_{ 0, Oi#j.

and are
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If it is not so, we multiply equation (1) by
B™(s) from the left side and with the introducing
of the designatioW(s) = B™(s) A(S) we get

Y(s) =W(s)U(s). (2)

Here W(s) =[w; (s)]
function.

Let us find out the least common multiple

(LCM) of denominator for scalar transfer function
of each line:

b’ (5) = LOM{W,(S), W,,(),-- W, ()}
and if we multiply the equation (40) on the left by
the matrix B” (s) = diag{b (s)}, we get
B (9)Y(5) =B (9W(s)U (s) = A (U (9),
Here A (s)=B(S)W(s) is polynomial
matrix. If the object description is given in terofs
transfer functions (40), it is also reduced tofthren

(39).
The desired dynamic equation is

Q(Y(s)=V(s). (@
Here, Q(s) = diag{q, (S)} is diagonal matrix.
Let us construct the regulator of the form
C(9)Y(9) +D(9)Z(9) =V (9) . (4)
D(s) = diag{d, (s)} .
C(s) =diag{c,(s)} andZ(s) is determined by
the following equation:
U(s) =kA(S)[Z(s)~R(9)Y(9)]. ()
Here, R(S) =diag{r;(s)} is diagonal matrix

too, k is gain in the feedback loop (large
coefficient).

1. MULTICHANNEL SYSTEMS: RAISING OF THE
ORDER

is matrix transfer

where

Let us denotem =deg[d, (S)] a power of
polynomiald, (S) .
Correspondingly, n, =degf. (s)],
n, —1=deg[c (s)]. We note that the matrices
C(s) and D(s) are not-degenerate, i. e.
c#0,d #0,0i=1..m. (6)
The value n, +m is the power of the

characteristic polynomial ofi-th circuit of the
system “object + regulator” without taking into
account fast motions. It is assumed that theramare



© ABTOMATUKA U MPOTPAMMHAA UHXEHEPWUA. 2017, Ne3(21)

roots of equatiordetA(s) =0 in the right half of
the complex plane. Otherwise the regulator will be
unstable.

Lemma 1.

With the growth ofk the system (1), (2), (4) is
arbitrarily exactly described with the equation (3)
where the matriXxQ(S) elements are determined as

n+m

G (s) =s"d;(s) +¢ () = Zqij ')

In other words, the system is equivalentnto
single channel system. In this case, charactesistic
polynomial of i-th channel is described by

polynomial g (S), i.e. ask™ — O the system

becomes autonomous.
Proof.
As to the location of roots of the polynomial

detA(s) one can note the following: equations
(42), (43) are equivalent to
U(s) =—LA™(s)D(9)[-(C(s) +
+ D(s)R(9)Y(s) +V(9)].-

This equation poles are determined by roots of
the polynomialsdetA(S) and detD(S) . Assume
that roots ofdetA(S) are located in the closed left
half-plane. Poles otletD(S) we locate in the left
half-plane. Actually, the characteristic polynomial
for i-th loop ¢} (S) is equal to

g (s) =d;()r (s) + ¢ (9),

Where powers oft}; (S) and d.(S) are equal
to N. +m and n. respectively. Givingd. (S) , we
find out uniquelyr; (S) andc, (S).

Let us prove the Lemma 1. For the sake of
simplicity we assume than, =degl, (S)]. The
substitution of (43) into (39) yields

B(s)Y(s) =kZ(s) —kR(s)Y(s).

Now we multiply this expression additionally

by D(s) from the left side:

[D(s)B(s) +kD(s)R(9)]Y (s) = kC(s)Y(s) *
+kV(s).
Substituting here (42), we get

TT,s°+(T,+T,)s+1 0

0 T,T,s* +(T, +T4)s+1}{

[k™D(9)B(s) + D(S)R() +C(I]Y(9) =V(9).
In that equation all matrices are diagonal ones,
therefore it is equivalent to the following system

[k™d; ()b () +d; (9)s" +C; (i (s) =Vi(3)
,i1=1...m.

Power of polynomialsd, (S) ,b (S), C (S) are
equal tom, n,, N, —1 respectively. Taking into
account (44) ask — o this system can be
replaces by the following

[d, (S +¢ (9)]Y,(9) =V (9), i =1....m,
or in the compact representation by

[D(s)R(s) +C(9)]Y(s) =V (s),
that is equivalent to (3) taking into account (7).
Thus, for the obtaining the desired dynamics (7)

with the channel i“th input — i-thoutput” one
should take regulator of the kind (4), (5). In this
case, all the roots of polynomiat; (S) should be
located in the left open half-plane, i. e. theialre
part must be negative which corresponds to the
stable desired dynamics. This condition is suffitien
to meet the requirement (6). For the regulator
stability one has to require additionally that the

roots of the polynomialdetA(S) should be also
located in the left half-plane.

Example 1.1.
Let consider the object
Ky K,
T,s+1 T,s+1 {Ul(S)}_[yl(S)}
Ky K Jlu,(9)] L»(9
T,s+1 T,s+1
It is required to provide the characteristic

polynomial of the first loop equal to
a(s)=a,s’ +a,s* +a,s+1,
and that of the second loop:
qz(s) = :8333 +:3252 +/Y18+1'
hencen,+m, =3, n, +m, =3.
We transform the object description to the form

(6):

Yi(s) | | k(T,s+D)  K,(Tis+1) || u,(s)
V2(9)] [Ke(Ts+D) Ky(Tos+D) | uy(9) ]

(T,T,S° +(T, +T,)s+1) y,(S) = Ky (T,s+Du, () + K, (T,s+Du,(s),

i.e.n=n,=2.
Let find out m=(m+n)-n =1 and
similarym=1. So, we find out that

deg[d. (s)]=1,i.e.

D(s) =diag{d,;s+d,,,d;S+dy} .
Sincedegfc, (s)]=n —1=1, then

C(s) =diag{c,;S+Cy,C,,S+Cye} -
The only thing left is to write down the matrix
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R(s) = diag{s"} = diag{s?,s%} .
According to (45) the desired characteristic
polynomial should have the form

a(s) = Sz(d118+ dyp) +(c,8+¢y),
0,(8) =5°(d,,5+ dyg) +(CpyS+Cyp)
hence, we have elements of matric{s) , R(S),
D(s):
d,=a; dy,=a,,¢,=0a,,¢,=a,=1,
dyy =B Uy =5, Cu =B, Cio =B =1.
For the realization of this control law the

vectors Y,y should be accessible. The regulator
equation has the form:

ASU(S) = ﬂ'l(diag{%}Y(S) +

" diag{di}ws)) |

(s)
If one takesm =0 for eachi from (4), (5)
regarding thatD($S) is a unit matrix we get
C(9)Y(s) +Z(s) =V(s), (4)
A(S)U () =K(Z(s) = R(s)Y(9)). (5)
The equation (45) is transformed as follows
q(s) =s" +c(9), e

That is the following corollary is valid.

e :

that is for its realization valuey, Y are necessary.

For some objects the regulator’)(4(5) is
physically realizable. As for example, for the

K,
k4

S+Cy
0

k1

U(s) = k{ka

1+T.s

. . kij
objects of the kind
ij

:I this statement is

valid.
Now let us consider the case where the only

vector Y(S) is accessible for measurements. Let us
construct the regulator of the form

D(s)A(s)U (s) =k[-C(s)Y(s) +V (s)]. (8)
where D(s) =diag{d,(s)}. The power of
polynomialsd, (S) define from the condition

deg(d, (s)] + min{degla, ()]} = deg[ (s)].(°)
which provides the physical realization possibility
of regulator (46). Herea;(s) are elements of

matrix A(S). Let us denotedeg[d. (S)] =r . The

factors of the polynomial€l. (S) will define from
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With the growth ofk the system (1), { (5)
becomes autonomous for output channels. The
characteristic polynomial afth loop is arbitrarily
exactly described by polynomial (7).

Thus, the regulator % (5) provides the
desired dynamics dfth loop of the same order as

the power of polynomiab (S) (1). The regulator
equation can be presented in the explicit form:
U (s) =kA™(s)(-C(9)Y(s) ~R(5)Y(s) -V (9))

Example 1.2.

For the object
M2
s s {ul(s)}{yl(s)}
k ki |u,(9] |y.(9)
S S

it is required to get the characteristic polynomial

0, (S) =S+Cyp, G,(S) =S+ Cy.
Let the rewrite the object equation in the form

(40):
Y1(S) kK, | u(s)
U (s)]’

s O
0 s y,(9) ky K,

that is n, =n, =1, m =m, =1. Let us make
use if Corollary 1. TakeC(S) =diag{c,,,C,.} .
R(s) =diag{s,s} . Then the regulator equation is

0 yl(s)Hvl(s)}
Y2(8) ] [ Vo(S)
the condition of decoupling of slow and fast
motions ini-th loop. In addition, one has to provide
the given location of regulator roots and system

roots corresponding to motion (for example, they
should be in the given sector). Since the

characteristic polynomiald, (S) will be defined
from the consideration of

£, ()b (9) +c(s) =O0.

the desired

(10)

where C (S) is characteristic
polynomial of i-th loop of the powerm, i.e.
degfc (s)] =m . Polynomial b (S) is included
into the object description and its power I%.
Thus, one should definél (S) . Let us denote is
power asl;. Denote ¢, =TI, +n, —m —1. Take

d. (s) of the kind
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g ) i
0(9) = Y a1,
ji=1
m —n, +1

j
+ Z'Bijs . (112)
j=0

Here & g +1 =1 Bim-nn =1

Let us consider the question of choosing the
power of polynomiald, (S) and its coefficients,

i.e.r;, a;, B; . Letus denote
mir{deg(a; ()1} =1;.
Then r; will be taken such as to satisfy the

realization

rzm -l (12)

r+n - r
(,LI " S'+ ai,ri +n—m —1lu

r+n-m-1

with its minimal value. As to the choice of
coefficients, there are two possible cases. Tt fir

case, if I, +n, <m +1, then coefficients are
selected from the condition of stability of (S) . If

rr+n <m+1, one should rather use the
structure of the kind (10). The problem of choice
for a;, B; is considered in the preceding section.

The following lemma is valid.

Lemma 2.

For the object (1) with regulator (12), where the
matrix D(S) is determined according to (10) with a

decrease of lthe characteristic polynomial of

system is determined by the mat€X(Ss) .

Proof.
Substitution (11) into (10) gives:

ST, st T+

NV B ST L+ uBiS+ UB)(S" +h ST
+bo)+¢ s™ +...+C,S+C,

After the regrouping the terms taking into
account thaf/ can be done quite small we get:

r+n—m C m _
oM+ J
ayu's™ + 3 ¢s
j=1 j=0
Here @,y =0, @i in-m =1. The slow

motions in the obtained relation are defined by the
following polynomial

c(s)=>¢s
j=0

The statement of the lemma is proved.
Thus, for the design of regulator providing the

given dynamicsC(S) under the assumption of
accessibility for measurements of vectdf(Ss)
only in (7) it is necessary to determinB(S)
according to (8), (9) and by the method presemied i
the second section to give the coefficiem&,‘q,
B

Example 1.3

For the object given in Example 1.1 it is
necessary to design the regulator (45) such that

_ 3 2
C () =C38° +¢,S” +¢;S+ ¢y,
C,(8) = (:2434 + 02353 + C22SZ +C;S+Cy.
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In the given example we havh, =n, =2,
l,=1,=1, m=3, m =4,
| = minfdegfa, (91} .
One should choos& =m —|,, hencer, =2
(the power of the polynomiatl, (S)) and r, =3.
The check of the relatiofy + N, <m,, shows that

the value of the coefficients adl, (S) and d,(S)

one has to choose only from the condition of
satisfactory form of transient processes in the
regulator itself. Thus, according to Lemma 2 we
take

d(s)=s* +sv2+1,
d,(s)=s’+25" +2s+1.
In this exampledegfg, (s)] =1 for all i, j . It

is assumed that the roots of equat@@tA(s) =0

are located in the left half-plane.
Corollary 2.
For the object (1) with the regulator (8), where

martix D(S) is defined according to
n-1
a(s)= Zai ,1+j/JJ s’ + .5+ B, (11)
i=1

the characteristic polynomial of-th loop is
described by polynomiat, (S) of the same power

asb(s).
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That is, for the realization of the characteristic one has to provide the desired dynamics

polynomial C (S) of power N, it is necessary to S+C,,S*+Cy, i.e. N, =n, =1, m=m, =0,
chooseD(S) of the form (11) r,=r,=1. According to (1) we take
Example 1.4 d,(s)=s+d,,, d,(s)=s+d,,. That is the
. 1 100 Uz 20
For the object regulator has the form
[S 0}{ yl(S)} {ki kz}[ul(sq
0 s|Y.(s)] [ks Ky us(s)
k k| (s+d,)™ 0 s+ 0
U(S) — k 1 2 ( 10) . _ ClO X(S)+ ClO Y(S) .
ky K, 0 (s+dy) 0 S+Cy Cao
2. MULTICHANNEL SYSTEMS: LOWERING OF Now we substitute (13) into (1):
THE ORDER

[K™B(9) +C(9)]Y(s) =V(9).
As K, B(s), C(s) are diagonal matrices, we
get that the characteristic polynomial of the syste

Let construct regulator for the object form (11)
A(s)U (s) = K[-C(s)Y(s) +V(9)] . (13)

Here K(s) =diag{k}, i =12,..n; k are i-th loop is determined by the expression
gain coefficients.  C(s) =diag{c ()}, kb (s)+¢(s). With k™ =g taking into
degk (s)] = m account (16) when substituting (15) into presiding

relation we get:
Let us require that with the growth df the n-m /h n-1
characteristic polynomial of the systefth loop is H (S + h,n—ls Tt Q18+

approaching to: n-m-1n-1
+h0)+(a,i,r\—m—l/'[ S +

m .
N;(s) = ¢;s’ (14) “m-2an-
j . n-m-2a.n-2 2-m+2
j=0 +ai,ry—rn—21u S +"'a’iZ:u S +
Here m <n, (that is just the order lowering). C| m Sm + .+ C|1S+ Cuo-

Matrix C(S) is given in the following way: After the regrouping terms under the

nml . L . assumption of small value o/ we obtain the
— Jam+j j
Ci (S) - Zaijlu S +ZC|jS , (15) lemma statement.
j=1 j=0 Corollary 3.
where N, is the power of polynomiall (S) (13;'heh characteristic polynomial of system (1),
, Where
(compressed into the objecti} is the power of K = diag{lg} , ki =k, Oi=1..n:

desired polynomial fori-th loop. Assume that
Cm =1, @ =1 Matrix Kwill be given as

n1
C(s) = diagc, (9}, G (9) = D ¢S’
i=0

follows
K = diag{k} = diagk" ™} . e =1,
Lemma 3. with the growth of Kis arbitrarily exactly

The characteristic polynomial of tleh loop of

system (39), (51) with the growth of k is arbithari described by polynomiat; (S) for i-th loop.

exactly described by the following expression That is the characteristic polynomial order is
n-m m reduced by a unity.
i am+j j The Corollary 3 was obtained from Lemma 3,
Za”'u 3 +ZC,J-S -7 takingm =n —1, r. =T in contrast to (16
j=1 j=0 gm=n-1,1r= (16).
Proof. Example 2.1.
Under the stability condition (17) witiy small For tWO-filmenSIonal object with matrix
enough we get the necessary property, namely, the transfer function W(s)U(s) =Y(s), where
i i 1 — —_ -17 . H—
system properties are nearing those properties W(s) _[Wij (9)] _[kij (TijS+1) 1; i=12,

described by (14). For attainment the stability of

(17) it is sufficient for the choice O‘ﬂ'ij to use the ] =1.2; itis necessary to design regulator with the

method presented in preceding items.
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desired dynamics by théth loop of the kind
S+Cp-

We reduce the object description to the form
(39) and obtain:

B(S) — 82 + b118+b10 0
- 0 s’ +b,s+b, |
k (T,s+1) kz(T15+1)}

A(S):{ksmsﬂ) K,(T,5+1)

k(Ts+D) K (Ts+D)Tu(s)
k(T 5+D) K, (T,s+D) | uj(s)

The characteristic polynomial dfth loop is
equal to (S°+S+C,. With i -~ 0 we get
S+C,,, that is required. From the form of regulator
equation it follows that for realizing this law ig

yl(t)}
Yo(t) |

sufficient to measure vectdf (t) = [

Corollary 4.
For the object (1) with regulator (13), where

degf;(s)] =degh (s)]=n. k =k=ux",

n .
— J
Cu (S) - ZCU S , the characteristic
j=0

polynomial of thei-th loop with the growth oK is
approachingC, (S) .

In general case, from (17) it is follows that for
realizing the control law with desired dynamics one

may need the vectorsY,Y® .Y where

It is assumed that eigenvalues A{S) belong
to the left half-plane. We obtain that
degh (s]=n =2, degh (s)]=1, m =1.
Therefore, let us make use of Corollary 3: we take
c(s)=s+c,, K=diag{#™}. Thus, we get
regulator

sta, 0 TwO],[wO
0 S+Cy || Y2(S) V,(9) .

r =max{},
f; =degk (s)] = min{deg(d; ()1} -

Let us consider the construction of regulator
providing the desired dynamics of reduced order

with accessibility for measurements only vecior
Let us choose the regulator form as

D() AU (8) = K[-C(g)Y(s) +V(9)]. (18)

Here D(s) =diag{d,(s)}, K =diag{k},
C(s)=diag{c (s)}, 1=12,..m. we
deglc. (s)]=n, -1, where n =degp (s)].
Let denote deg[d, (S)] =q,. Dimensions of the

matrices A(S), K, C(S) are nxn. From the

possibility of realization of regulator (18) we
impose the limitation

take

>4, (92, (9,9 =k, (I (9 +% ().

i.e. g +l=2n-1 for al i,

l; =min{deg([a; (s)]} . we take minimal order
i

where

g =n -1, -1 and give d,(S) and ¢ (9) as
followings:

0 L
di (S) = Zai,q—m+jﬂjsj , (19)
j=0

n-m-4om .
c(s) = Zaijﬂjsm+1 +chjsj , (20)
j=L j=0

where &j; =1, a,

I,m—m+q
-1 _ ,,n—-m
k= =p"",

=1, Gy =1,
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Lemma 4.
For the object (1) with regulator (18) with the

growth of K. and with the choice ofd, (S) and
C (S) according (19) and (20) , the characteristic
polynomial approaches the form

n-m+g; i m+i m )

J J
2 s+ G o
=1 j=0
:]_, C':m :]__

where aij =1' ailni —m+q
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If the polynomial remains stable gt — O, the

first term of (21) determines the fast roots anel th
second one determines the slow roots. Thus, in this
lemma it is stated that slow motions in the system

are determined by polynomial (14). Hemg <n,,
n-m

=1

If we remove the parenthesis, rake into account
that 4' >> (/'™ group the similar terms, separate
terms containing/ in minimal powers and neglect

all the rest, we get the equation (20).

One can formulate the corollary.

Let us consider the special case. Let choose the
following structure of regulator

n1
() =268 ¢,,=1
j=0

G o
d;(s) = Zai,jﬂlujsj ,ap =1,
i=0

-1
ai,qi+l:1! kl _ﬂ;
q =n -1 =1 (o)

Corollary 5.
For he object (1) with regulator (18) with the

choice ofd, (S) andc, (S)by (22), at4 — O the

characteristic  polynomial  of i-th
approaching the form

G N_y
jahiti j
Zaij'u S +ZCIJS . (23)
j=0

j=1

loop is

The Corollary 5 can be interpreted as follows. If
the required dynamics of theth loop should have

s +2 1

'u—(s+1) s+1|u(s)| | ©

The task is solved.
CONCLUSION

In the paper the development of method of the
dividing of motions has been developed. The results
are proven by mathematical conversion taking into
account that it is allowed to neglect small terms i
equations comparatively much bigger terms with
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u(s)|__|s+Cp

m is the power of the desired characteristic

polynomial of thd-th loop.

Let us prove the Lemma 4. Substituting (18) —
(21) into (1) one gets the system characteristic
polynomial of the form

+1 G
. ‘] . .
a,ijlujsm +/'IZ/'IJai,q—m+jSJ +C|(S).
i=0

the ordern, —1, then for the regulator design one
should use formulae (18) and (22). For proving the
Corollary 5, it is sufficient to givem, =n, =1 in
Lemma 3.

Example 2.2.

Let the object be described by the matrix
transfer function [10]:

S+2 1
2 2
W(s)=| S +s4J§I3 S +ils+3 _

s’ +4s+3 s?+4s+3

It is required to design the regulator providing
the desired dynamics by the first and second loops,
respectively:

N,(S) =s+C)y, N,(S) =S+Cy.

Here
S+2 1
A(s) =
—(s+l) s+1}’
2
B(s) = S +4s+3 2 0 |
0 S°+4+3

i.e.degb(s)]=2, m=1.Asl, =1, q =0,
then d.(s)=1, ie. D(s)

K™ =diag{ /4 . Thus we obtain the regulator in
the form

is unit matrix,

0

ACITAS
AOINIAC

the same power of argumeng (argument of
Laplace transform which is relative to frequency).
The proposed method does not allow getting of
astatic multi-channel system. For this purposés it
necessary to use preliminary integrator in the tinpu
of the channel, as it is recommended for SISO
systems in paper [2].
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In this case the integrator transfer function in
multi-channel case has the following form:

1
= .. 0
1. |S
W, (s) =diag[—] =|... ... ...|.
S 1
0o .. =
S

This multiplier is set at the object input before
the procedure of the regulator design. It is
essentially, that in this case the order of the
resulting new object is increasing.
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